В помощь школьнику и студенту

Вычислить площадь s криволинейной трапеции ограниченной линиями. Вычислить площадь фигуры примеры. В данном случае

В июле 2020 года NASA запускает экспедицию на Марс. Космический аппарат доставит на Марс электронный носитель с именами всех зарегистрированных участников экспедиции.


Если этот пост решил вашу проблему или просто понравился вам, поделитесь ссылкой на него со своими друзьями в социальных сетях.

Один из этих вариантов кода нужно скопировать и вставить в код вашей веб-станицы, желательно между тегами и или же сразу после тега . По первому варианту MathJax подгружается быстрее и меньше тормозит страницу. Зато второй вариант автоматически отслеживает и подгружает свежие версии MathJax. Если вставить первый код, то его нужно будет периодически обновлять. Если вставить второй код, то страницы будут загружаться медленнее, зато вам не нужно будет постоянно следить за обновлениями MathJax.

Подключить MathJax проще всего в Blogger или WordPress: в панели управления сайтом добавьте виджет, предназначенный для вставки стороннего кода JavaScript, скопируйте в него первый или второй вариант кода загрузки, представленного выше, и разместите виджет поближе к началу шаблона (кстати, это вовсе не обязательно, поскольку скрипт MathJax загружается асинхронно). Вот и все. Теперь изучите синтаксис разметки MathML, LaTeX и ASCIIMathML, и вы готовы вставлять математические формулы на веб-страницы своего сайта.

Очередной канун Нового Года... морозная погода и снежинки на оконном стекле... Все это побудило меня вновь написать о... фракталах, и о том, что знает об этом Вольфрам Альфа. По этому поводу есть интересная статья , в которой имеются примеры двумерных фрактальных структур. Здесь же мы рассмотрим более сложные примеры трехмерных фракталов.

Фрактал можно наглядно представить (описать), как геометрическую фигуру или тело (имея ввиду, что и то и другое есть множество, в данном случае, множество точек), детали которой имеют такую же форму, как и сама исходная фигура. То есть, это самоподобная структура, рассматривая детали которой при увеличении, мы будем видеть ту же самую форму, что и без увеличения. Тогда как в случае обычной геометрической фигуры (не фрактала), при увеличении мы увидим детали, которые имеют более простую форму, чем сама исходная фигура. Например, при достаточно большом увеличении часть эллипса выглядит, как отрезок прямой. С фракталами такого не происходит: при любом их увеличении мы снова увидим ту же самую сложную форму, которая с каждым увеличением будет повторяться снова и снова.

Бенуа Мандельброт (Benoit Mandelbrot), основоположник науки о фракталах, в своей статье Фракталы и искусство во имя науки написал: "Фракталы - это геометрические формы, которые в равной степени сложны в своих деталях, как и в своей общей форме. То есть, если часть фрактала будет увеличена до размера целого, она будет выглядеть, как целое, или в точности, или, возможно, с небольшой деформацией".









Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Ключевые слова: интеграл, криволинейная трапеция, площадь фигур, ограниченных лилиями

Оборудование : маркерная доска, компьютер, мультимедиа-проектор

Тип урока : урок-лекция

Цели урока :

  • воспитательные: формировать культуру умственного труда, создавать для каждого ученика ситуацию успеха, формировать положительную мотивацию к учению; развивать умение говорить и слушать других.
  • развивающие: формирование самостоятельности мышления ученика по применению знаний в различных ситуациях, умения анализировать и делать выводы, развитие логики, развитие умения правильно ставить вопросы и находить на них ответы. Совершенствование формирования вычислительных, расчётных навыков, развитие мышления учащихся в ходе выполнения предложенных заданий, развитие алгоритмической культуры.
  • образовательные : сформировать понятия о криволинейной трапеции, об интеграле, овладеть навыками вычисления площадей плоских фигур

Метод обучения: объяснительно-иллюстративный.

Ход урока

В предыдущих классах мы научились вычислять площади фигур, границами которых являются ломаные. В математике существуют методы, позволяющие вычислять площади фигур, ограниченных кривыми. Такие фигуры называются криволинейными трапециями, и вычисляют их площадь с помощью первообразных.

Криволинейная трапеция (слайд 1 )

Криволинейной трапецией называется фигура, ограниченная графиком функции , (щ.м. ), прямыми x = a и x = b и осью абсцисс

Различные виды криволинейных трапеций (слайд 2)

Рассматриваем различные виды криволинейных трапеций и замечаем: одна из прямых вырождена в точку, роль ограничивающей функции играет прямая

Площадь криволинейной трапеции (слайд 3)

Зафиксируем левый конец промежутка а, а правый х будем менять, т. е., мы двигаем правую стенку криволинейной трапеции и получаем меняющуюся фигуру. Площадь переменной криволинейной трапеции, ограниченной графиком функции , является первообразной F для функции f

И на отрезке [a; b ] площадь криволинейной трапеции, образованной функцией f, равна приращению первообразной этой функции:

Задание 1:

Найти площадь криволинейной трапеции, ограниченной графиком функции: f(x) = х 2 и прямыми у = 0, х = 1, х = 2.

Решение: (по алгоритму слайд 3 )

Начертим график функции и прямые

Найдём одну из первообразных функции f(x) = х 2 :

Самопроверка по слайду

Интеграл

Рассмотрим криволинейную трапецию, заданную функцией f на отрезке [a; b ]. Разобьём этот отрезок на несколько частей. Площадь всей трапеции разобьётся на сумму площадей более мелких криволинейных трапеций. (слайд 5) . Каждую такую трапецию можно приближённо считать прямоугольником. Сумма площадей этих прямоугольников даёт приближённое представление о всей площади криволинейной трапеции. Чем мельче мы разобьём отрезок [a; b ], тем точнее вычислим площадь.

Запишем эти рассуждения в виде формул.

Разделим отрезок [a; b ] на n частей точками х 0 =а, х1,… ,хn = b. Длину k- го обозначим через хk = xk – xk-1 . Составим сумму

Геометрически эта сумма представляет собой площадь фигуры, заштрихованной на рисунке (щ.м .)

Суммы вида называются интегральными суммами для функции f . (щ.м.)

Интегральные суммы дают приближённое значение площади. Точное значение получается при помощи предельного перехода. Представим, что мы измельчаем разбиение отрезка [a; b ] так, что длины всех маленьких отрезков стремятся к нулю. Тогда площадь составленной фигуры будет приближаться к площади криволинейной трапеции. Можно сказать, что площадь криволинейной трапеции равна пределу интегральных сумм, Sк.т. (щ.м.) или интегралу, т. е.,

Определение:

Интегралом функции f (х) от a до b называется предел интегральных сумм

= (щ.м.)

Формула Ньютона- Лейбница.

Помним, что предел интегральных сумм равен площади криволинейной трапеции, значит можно записать:

Sк.т. =(щ.м.)

С другой стороны, площадь криволинейной трапеции вычисляется по формуле

S к. т.(щ.м.)

Сравнивая эти формулы, получим:

= (щ.м.)

Это равенство называется формулой Ньютона- Лейбница.

Для удобства вычислений формулу записывают в виде:

= = (щ.м.)

Задания: (щ.м.)

1. Вычислить интеграл по формуле Ньютона- Лейбница: (проверяем по слайду 5 )

2. Составить интегралы по чертежу (проверяем по слайду 6 )

3. Найти площадь фигуры, ограниченной линиями: у = х 3 , у = 0, х = 1, х = 2. (Слайд 7 )

Нахождение площадей плоских фигур (слайд 8 )

Как найти площадь фигур, которые не являются криволинейными трапециями?

Пусть даны две функции, графики которых вы видите на слайде. (щ.м.) Необходимо найти площадь закрашенной фигуры. (щ.м.) . Фигура, о которой идёт речь, является криволинейной трапецией? А как можно найти её площадь, пользуясь свойством аддитивности площади? Рассмотреть две криволинейные трапеции и из площади одной из них вычесть площадь другой (щ.м.)

Составим алгоритм нахождения площади по анимации на слайде:

  • Построить графики функций
  • Спроецировать точки пересечения графиков на ось абсцисс
  • Заштриховать фигуру, полученную при пересечении графиков
  • Найти криволинейные трапеции, пересечение или объединение которых есть данная фигура.
  • Вычислить площадь каждой из них
  • Найти разность или сумму площадей
  • Устное задание: Как получить площадь заштрихованной фигуры (рассказать при помощи анимации, слайд 8 и 9)

    Домашнее задание: Проработать конспект, №353 (а), № 364 (а).

    Список литературы

  • Алгебра и начала анализа: учебник для 9-11 классов вечерней (сменной) школы/ под ред. Г.Д. Глейзера. - М: Просвещение, 1983.
  • Башмаков М.И. Алгебра и начала анализа: учебное пособие для 10-11 кл.сред.шк./ Башмаков М.И. - М: Просвещение, 1991.
  • Башмаков М.И. Математика: учебник для учреждений нач. и сред. проф. образования/ М.И. Башмаков. - М: Академия, 2010.
  • Колмогоров А.Н. Алгебра и начала анализа: учебник для 10-11 кл. общеобразовательных учреждений/ А.Н.Колмогоров. - М: Просвещение, 2010.
  • Островский С.Л. Как сделать презентацию к уроку?/ C.Л. Островский. – М.: Первое сентября, 2010.
  • Пример1 . Вычислить площадь фигуры, ограниченной линиями: х + 2у – 4 = 0, у = 0, х = -3, и х = 2


    Выполним построение фигуры (см. рис.) Строим прямую х + 2у – 4 = 0 по двум точкам А(4;0) и В(0;2). Выразив у через х, получим у = -0,5х + 2. По формуле (1), где f(x) = -0,5х + 2, а = -3, в = 2, находим

    S = = [-0,25=11,25 кв. ед

    Пример 2. Вычислить площадь фигуры, ограниченной линиями: х – 2у + 4 = 0, х + у – 5 = 0 и у = 0.

    Решение. Выполним построение фигуры.

    Построим прямую х – 2у + 4 = 0: у = 0, х = - 4, А(-4; 0); х = 0, у = 2, В(0; 2).

    Построим прямую х + у – 5 = 0: у = 0, х = 5, С(5; 0), х = 0, у = 5, D(0; 5).

    Найдем точку пересечения прямых, решив систему уравнений:

    х = 2, у = 3; М(2; 3).

    Для вычисления искомой площади разобьем треугольник АМС на два треугольника АМN и NМС, так как при изменении х от А до N площадь ограничена прямой, а при изменении х от N до С - прямой


    Для треугольника АМN имеем: ; у = 0,5х + 2, т. е. f(x) = 0,5х + 2, a = - 4, b = 2.

    Для треугольника NМС имеем: y = - x + 5, т. е. f(x) = - x + 5, a = 2, b = 5.

    Вычислив площадь каждого из треугольников и сложив результаты, находим:

    кв. ед.

    кв. ед.

    9 + 4, 5 = 13,5 кв. ед. Проверка: = 0,5АС = 0,5 кв. ед.

    Пример 3. Вычислить площадь фигуры, ограниченной линиями: y = x 2 , y = 0, x = 2, x = 3.

    В данном случае требуется вычислить площадь криволинейной трапеции, ограниченной параболой y = x 2 , прямыми x = 2 и x = 3и осью Ох(см. рис.) По формуле (1) находим площадь криволинейной трапеции


    = = 6кв. ед.

    Пример 4. Вычислить площадь фигуры, ограниченной линиями: у = - x 2 + 4 и у = 0

    Выполним построение фигуры. Искомая площадь заключена между параболой у = - x 2 + 4 и осью Ох.


    Найдем точки пересечения параболы с осью Ох. Полагая у = 0, найдем х = Так как данная фигура симметрична относительно оси Оу, то вычислим площадь фигуры, расположенной справа от оси Оу, и полученный результат удвоим: = +4x]кв. ед. 2 = 2 кв. ед.

    Пример 5. Вычислить площадь фигуры, ограниченной линиями: y 2 = x, yx = 1, x = 4

    Здесь требуется вычислить площадь криволинейной трапеции, ограниченной верхней ветвью параболыy 2 = x, осью Ох и прямыми x = 1иx = 4 (см. рис.)


    По формуле (1), где f(x) = a = 1 и b = 4 имеем = (= кв. ед.

    Пример 6 . Вычислить площадь фигуры, ограниченной линиями:y = sinx, y = 0, x = 0, x= .

    Искомая площадь ограничена полуволной синусоиды и осью Ох (см. рис.).


    Имеем - cosx = - cos = 1 + 1 = 2 кв. ед.

    Пример 7. Вычислить площадь фигуры, ограниченной линиями: y = - 6х, у = 0 и х = 4.

    Фигура расположена под осью Ох (см. рис.).

    Следовательно, её площадь находим по формуле (3)


    = =

    Пример 8. Вычислить площадь фигуры, ограниченной линиями:y = и х = 2. Кривую y = построим по точкам (см. рис.). Таким образом, площадь фигуры находим по формуле (4)

    Пример 9 .

    х 2 + у 2 = r 2 .

    Здесь требуется вычислить площадь, ограниченную окружностью х 2 + у 2 = r 2 , т. е. площадь круга радиуса r с центром в начале координат. Найдем четвертую часть этой площади, взяв пределы интегрирования от 0

    доr; имеем: 1 = = [

    Следовательно, 1 =

    Пример 10. Вычислить площадь фигуры, ограниченной линиями: у= х 2 и у = 2х

    Данная фигура ограничена параболой у= х 2 и прямой у = 2х (см. рис.) Для определения точек пересечения заданных линий решим систему уравнений:х 2 – 2х = 0 х = 0 и х = 2


    Используя для нахождения площади формулу (5), получим

    = . То есть не учитываются такие, например, линии, как разрез гриба, у которого ножка вполне вписывается в этот отрезок, а шляпка намного шире.

    Боковые отрезки могут вырождаться в точки . Если вы увидели такую фигуру на чертеже, это не должно вас смущать, так как эта точка всегда имеет своё значение на оси "иксов". А значит с пределами интегрирования всё в порядке.

    Теперь можно переходить к формулам и вычислениям. Итак, площадь s криволинейной трапеции может быть вычислена по формуле

    Если же f (x ) ≤ 0 (график функции расположен ниже оси Ox ), то площадь криволинейной трапеции может быть вычислена по формуле

    Есть ещё случаи, когда и верхняя, и нижняя границы фигуры - функции, соответственно y = f (x ) и y = φ (x ) , то площадь такой фигуры вычисляется по формуле

    . (3)

    Решаем задачи вместе

    Начнём со случаев, когда площадь фигуры может быть вычислена по формуле (1).

    Пример 1. Ox ) и прямыми x = 1 , x = 3 .

    Решение. Так как y = 1/x > 0 на отрезке , то площадь криволинейной трапеции находим по формуле (1):

    .

    Пример 2. Найти площадь фигуры, ограниченной графиком функции , прямой x = 1 и осью абсцисс (Ox ).

    Решение. Результат применения формулы (1):

    Если то s = 1/2 ; если то s = 1/3 , и т.д.

    Пример 3. Найти площадь фигуры, ограниченной графиком функции , осью абсцисс (Ox ) и прямой x = 4 .

    Решение. Фигура, соответствующая условию задачи - криволинейная трапеция, у которой левый отрезок выродился в точку. Пределами интегрирования служат 0 и 4. Поскольку , по формуле (1) находим площадь криволинейной трапеции:

    .

    Пример 4. Найти площадь фигуры, ограниченной линиями , , и находящейся в 1-й четверти.

    Решение. Чтобы воспользоваться формулой (1), представим площадь фигуры, заданной условиями примера, в виде суммы площадей треугольника OAB и криволинейной трапеции ABC . При вычислении площади треугольника OAB пределами интегрирования служат абсциссы точек O и A , а для фигуры ABC - абсциссы точек A и C (A является точкой пересечения прямой OA и параболы, а C - точкой пересечения параболы с осью Ox ). Решая совместно (как систему) уравнения прямой и параболы, получим (абсциссу точки A ) и (абсциссу другой точки пересечения прямой и параболы, которая для решения не нужна). Аналогично получим , (абсциссы точек C и D ). Теперь у нас еть всё для нахождения площади фигуры. Находим:

    Пример 5. Найти площадь криволинейной трапеции ACDB , если уравнение кривой CD и абсциссы A и B соответственно 1 и 2.

    Решение. Выразим данное уравнение кривой через игрек: Площадь криволинейной трапеции находим по формуле (1):

    .

    Переходим к случаям, когда площадь фигуры может быть вычислена по формуле (2).

    Пример 6. Найти площадь фигуры, ограниченной параболой и осью абсцисс (Ox ).

    Решение. Данная фигура расположена ниже оси абсцисс. Поэтому для вычисления её площади воспользуемся формулой (2). Пределами интегрирования являются абсциссы и точек пересечения параболы с осью Ox . Следовательно,

    Пример 7. Найти площадь, заключённую между осью абсцисс (Ox ) и двумя соседними волнами синусоиды.

    Решение. Площадь данной фигуры можем найти по формуле (2):

    .

    Найдём отдельно каждое слагаемое:

    .

    .

    Окончательно находим площадь:

    .

    Пример 8. Найти площадь фигуры, заключённой между параболой и кривой .

    Решение. Выразим уравнения линий через игрек:

    Площадь по формуле (2) получим как

    ,

    где a и b - абсциссы точек A и B . Найдём их, решая совместно уравнения:

    Окончательно находим площадь:

    И, наконец, случаи, когда площадь фигуры может быть вычислена по формуле (3).

    Пример 9. Найти площадь фигуры, заключённой между параболами и .

    Похожие публикации