В помощь школьнику и студенту

Объем конуса, его расчет. Построение развертки конуса Не параллельные основания

Вместо слова «выкройка» иногда употребляют «развертка», однако этот термин неоднозначен: например, разверткой называют инструмент для увеличения диаметра отверстия, и в электронной технике существует понятие развертки. Поэтому, хоть я и обязан употребить слова «развертка конуса», чтобы поисковики и по ним находили эту статью, но пользоваться буду словом «выкройка».

Построение выкройки для конуса — дело нехитрое. Рассмотрим два случая: для полного конуса и для усеченного. На картинке (кликните, чтобы увеличить) показаны эскизы таких конусов и их выкроек. (Сразу замечу, что речь здесь пойдет только о прямых конусах с круглым основанием. Конусы с овальным основанием и наклонные конусы рассмотрим в следующих статьях).

1. Полный конус

Обозначения:

Параметры выкройки рассчитываются по формулам:
;
;
где .

2. Усеченный конус

Обозначения:

Формулы для вычисления параметров выкройки:
;
;
;
где .
Заметим, что эти формулы подойдут и для полного конуса, если мы подставим в них .

Иногда при построении конуса принципиальным является значение угла при его вершине (или при мнимой вершине, если конус усеченный). Самый простой пример — когда нужно, чтобы один конус плотно входил в другой. Обозначим этот угол буквой (см. картинку).
В этом случае мы можем его использовать вместо одного из трех входных значений: , или . Почему «вместо «, а не «вместе «? Потому что для построения конуса достаточно трех параметров, а значение четвертого вычисляется через значения трех остальных. Почему именно трех, а не двух и не четырех — вопрос, выходящий за рамки этой статьи. Таинственный голос мне подсказывает, что это как-то связано с трехмерностью объекта «конус». (Сравните с двумя исходными параметрами двухмерного объекта «сегмент круга», по которым мы вычисляли все остальные его параметры в статье .)

Ниже приведены формулы, по которым определяется четвертый параметр конуса, когда заданы три.

4. Методы построения выкройки

  • Вычислить значения на калькуляторе и построить выкройку на бумаге (или сразу на металле) при помощи циркуля, линейки и транспортира.
  • Занести формулы и исходные данные в электронную таблицу (например, Microsoft Exel). Полученный результат использовать для построения выкройки при помощи графического редактора (например, CorelDRAW).
  • использовать мою программу , которая нарисует на экране и выведет на печать выкройку для конуса с заданными параметрами. Эту выкройку можно сохранить в виде векторного файла и импортировать в CorelDRAW.

5. Не параллельные основания

Что касается усеченных конусов, то программа Cones пока строит выкройки для конусов, имеющих только параллельные основания.
Для тех, кто ищет способ построения выкройки усеченного конуса с не параллельными основаниями, привожу ссылку, предоставленную одним из посетителей сайта:
Усеченный конус с не параллельными основаниями.

Геометрия как наука сформировалась в Древнем Египте и достигла высокого уровня развития. Известный философ Платон основал Академию, где пристальное внимание уделялось систематизации имеющихся знаний. Конус как одна из геометрических фигур впервые упоминается в известном трактате Евклида "Начала". Евклид был знаком с трудами Платона. Сейчас мало кто знает, что слово "конус" в переводе с греческого языка обозначает "сосновая шишка". Греческий математик Евклид, живший в Александрии, по праву считается основоположником геометрической алгебры. Древние греки не только стали преемниками знаний египтян, но и значительно расширили теорию.

История определения конуса

Геометрия как наука появилась из практических требований строительства и наблюдений за природой. Постепенно опытные знания обобщались, а свойства одних тел доказывались через другие. Древние греки ввели понятие аксиом и доказательств. Аксиомой называется утверждение, полученное практическим путем и не требующее доказательств.

В своей книге Евклид привел определение конуса как фигуры, которая получается вращением прямоугольного треугольника вокруг одного из катетов. Также ему принадлежит основная теорема, определяющая объем конуса. А доказал эту теорему древнегреческий математик Евдокс Книдский.

Другой математик древней Греции, Аполлоний Пергский, который был учеником Евклида, развил и изложил теорию конических поверхностей в своих книгах. Ему принадлежит определение конической поверхности и секущей к ней. Школьники наших дней изучают Евклидову геометрию, сохранившую основные теоремы и определения с древних времен.

Основные определения

Прямой круговой конус образован вращением прямоугольного треугольника вокруг одного катета. Как видно, понятие конуса не изменилось со времен Евклида.

Гипотенуза AS прямоугольного треугольника AOS при вращении вокруг катета OS образует боковую поверхность конуса, поэтому называется образующей. Катет OS треугольника превращается одновременно в высоту конуса и его ось. Точка S становится вершиной конуса. Катет AO, описав круг (основание), превратился в радиус конуса.

Если сверху провести плоскость через вершину и ось конуса, то можно увидеть, что полученное осевое сечение представляет собой равнобедренный треугольник, в котором ось является высотой треугольника.

где C — длина окружности основания, l — длина образующей конуса, R — радиус основания.

Формула расчета объема конуса

Для расчета объема конуса используется следующая формула:

где S является площадью основания конуса. Так как основание — круг, его площадь рассчитывается так:

Отсюда следует:

где V — объем конуса;

n — число, равное 3,14;

R — радиус основания, соответствующий отрезку AO на рисунке 1;

H — высота, равная отрезку OS.

Усеченный конус, объем

Имеется прямой круговой конус. Если плоскостью, перпендикулярной высоте, отсечь верхнюю часть, то получится усеченный конус. Два его основания имеют форму круга с радиусами R 1 и R 2 .

Если прямой конус образуется вращением прямоугольного треугольника, то усеченный конус — вращением прямоугольной трапеции вокруг прямой стороны.

Объем усеченного конуса рассчитывается по следующей формуле:

V=n*(R 1 2 +R 2 2 +R 1 *R 2)*H/3.

Конус и его сечение плоскостью

Перу древнегреческого математика Аполлония Пергского принадлежит теоретический труд «Конические сечения». Благодаря его работам в геометрии появились определения кривых: параболы, эллипса, гиперболы. Рассмотрим, причем здесь конус.

Возьмем прямой круговой конус. Если плоскость пересекает его перпендикулярно оси, то в разрезе образуется круг. Когда секущая пересекает конус под углом к оси, то в разрезе получается эллипс.

Секущая плоскость, перпендикулярная основанию и параллельная оси конуса, образует на поверхности гиперболу. Плоскость, разрезающая конус под углом к основанию и параллельная касательной к конусу, создает на поверхности кривую, которую назвали параболой.

Решение задачи

Даже простая задача о том, как изготовить ведро определенного объема, требует знаний. Например, необходимо рассчитать размеры ведра, чтобы оно имело объем 10 литров.

V=10 л=10 дм 3 ;

Развертка конуса имеет вид, схематически приведенный на рисунке 3.

L - образующая конуса.

Чтобы узнать площадь поверхности ведра, которая вычисляется по следующей формуле:

S=n*(R 1 +R 2)*L,

необходимо вычислить образующую. Ее находим из величины объема V=n*(R 1 2 +R 2 2 +R 1 *R 2)*H/3.

Отсюда H=3V/n*(R 1 2 +R 2 2 +R 1 *R 2).

Усеченный конус образуется вращением прямоугольной трапеции, в которой боковая сторона является образующей конуса.

L 2 =(R 2- R 1) 2 +H 2 .

Теперь у нас имеются все данные, чтобы построить чертеж ведра.

Почему пожарные ведра имеют форму конуса?

Кто задумывался, почему пожарные ведра имеют, казалось бы, странную коническую форму? А это не просто так. Оказывается, коническое ведро при тушении пожара имеет много преимуществ перед обычным, имеющим форму усеченного конуса.

Во-первых, как оказывается, пожарное ведро быстрее наполняется водой и при переноске она не расплескивается. Конус, объем которого больше обычного ведра, за один раз позволяет перенести больше воды.

Во-вторых, воду из него можно выплеснуть на большее расстояние, чем из обычного ведра.

В-третьих, если коническое ведро сорвется с рук и упадет в огонь, то вся вода выливается на очаг возгорания.

Все перечисленные факторы позволяют сэкономить время — главный фактор при тушении пожара.

Практическое применение

У школьников часто возникает вопрос о том, зачем учить, как рассчитывать объем разных геометрических тел, в том числе конуса.

А инженеры-конструкторы постоянно сталкиваются с необходимостью рассчитать объем конических частей деталей механизмов. Это наконечники сверл, части токарных и фрезерных станков. Форма конуса позволят сверлам легко входить в материал, не требуя первоначальной наметки специальным инструментом.

Объем конуса имеет куча песка или земли, высыпанная на землю. При необходимости, проведя несложные измерения, можно рассчитать ее объем. У некоторых вызовет затруднение вопрос о том, как узнать радиус и высоту кучи песка. Вооружившись рулеткой, измеряем окружность холмика C. По формуле R=C/2n узнаем радиус. Перекинув веревку (рулетку) через вершину, находим длину образующей. А вычислить высоту по теореме Пифагора и объем не составит труда. Конечно, такой расчет приблизителен, но позволяет определить, не обманули вас, привезя тонну песка вместо куба.

Некоторые здания имеют форму усеченного конуса. Например, Останкинская телебашня приближается к форме конуса. Ее можно представить состоящей из двух конусов, поставленных друг на друга. Купола старинных замков и соборов представляют собой конус, объем которого древние зодчие рассчитывали с удивительной точностью.

Если внимательно присмотреться к окружающим предметам, то многие из них являются конусами:

  • воронки-лейки для наливания жидкостей;
  • рупор-громкоговоритель;
  • парковочные конусы;
  • абажур для торшера;
  • привычная новогодняя елочка;
  • духовые музыкальные инструменты.

Как видно из приведенных примеров, умение рассчитать объем конуса, площадь его поверхности необходимо в профессиональной и повседневной жизни. Надеемся, что статья придет вам на помощь.

Среди многообразия геометрических тел одним из самых интересных является конус. Образуется он путем вращения прямоугольного треугольника вокруг одного из своих катетов.

Как найти объем конуса – основные понятия

Перед тем, как начать вычисления объема конуса, стоит ознакомиться с основными понятиями.

  • Круговой конус – основанием такого конуса является круг. Если в основании лежит эллипс, парабола или гипербола, то фигуры называются эллиптическим, параболическим или гиперболическим конусом. Стоит помнить, что два последних вида конуса имеют бесконечный объем.
  • Усеченный конус – часть конуса, расположенная между основанием и плоскостью, параллельной этому основанию, находящейся между вершиной и основанием.
  • Высота – перпендикулярный основанию отрезок, выпущенный из вершины.
  • Образующая конуса – отрезок, соединяющий границу основания и вершину.

Объем конуса

Для расчета объема конуса применяется формула V=1/3*S*H, где S – площадь основания, H – высота. Так как основание конуса – круг, то его площадь находится по формуле S= nR^2, где n = 3,14, R – радиус окружности.

Бывает ситуация, когда неизвестны какие-то из параметров: высота, радиус или образующая. В таком случае стоит прибегнуть к теореме Пифагора. Осевым сечением конуса является равнобедренный треугольник, состоящий из двух прямоугольных треугольника, где l – гипотенуза, а H и R – катеты. Тогда l=(H^2+R^2)^1/2.


Объем усеченного конуса

Усеченный конус представляет собой конус с обрезанной верхушкой.


Чтобы найти объем такого конуса понадобится формула:

V=1/3*n*H*(r^2+rR+R^2),


где n=3.14, r – радиус окружности сечения, R – радиус большого основания, H – высота.

Осевым сечением усеченного конуса будет равнобедренная трапеция. Поэтому, если необходимо найти длину образующей конуса или радиуса одной из окружностей, стоит применять формулы для нахождения боковых сторон и оснований трапеции.

Найти объем конуса, если его высота равна 8 см, радиус основания 3 см.

Дано: H=8 см, R=3 см.

Сначала найдем площадь основания, применив формулу S=nR^2.

S=3.14*3^2=28.26 см^2

Теперь по формуле V=1/3*S*H находим объем конуса.

V=1/3*28.26*8=75.36 см^3


Фигуры в форме конуса встречаются повсюду: парковочные конусы, башни строений, абажур светильника. Поэтому знание, как найти объем конуса, порой может пригодиться как в профессиональной, так и в повседневной жизни.

Введите высоту и радиусы оснований:

Определение усеченного конуса

Усеченный конус можно получить из обычного конуса, если пересечь такой конус плоскостью, параллельной основанию. Тогда та фигура, которая находится между двумя плоскостями (этой плоскостью и основание обычного конуса) и будет называться усеченным конусом.

У него имеется два основания , которые для кругового конуса являются кругами, причем один из них больше другого. Также усеченный конус имеет высоту - отрезок, соединяющий два основания и перпендикулярный каждому из них.

Онлайн-калькулятор

Усеченный конус может быть прямым , тогда у него центр одного основания проецируется в центр второго. Если конус наклонный , то такое проецирование не имеет места.

Рассмотрим прямой круговой конус. Объем данной фигуры может быть рассчитан несколькими способами.

Формула объема усеченного конуса через радиусы оснований и расстояние между ними

Если нам дан круговой усеченный конус, то найти его объем можно по формуле:

Объем усеченного конуса

V = 1 3 ⋅ π ⋅ h ⋅ (r 1 2 + r 1 ⋅ r 2 + r 2 2) V=\frac{1}{3}\cdot\pi\cdot h\cdot(r_1^2+r_1\cdot r_2+r_2^2) V = 3 1 ​ ⋅ π ⋅ h ⋅ (r 1 2 + r 1 r 2 + r 2 2 )

R 1 , r 2 r_1, r_2 r 1 , r 2 - радиусы оснований конуса;
h h h - расстояние между этими основаниями (высота усеченного конуса).

Рассмотрим пример.

Задача 1

Найдите объем усеченного конуса, если известно, что площадь малого основания равна 64 π см 2 64\pi\text{ см}^2 6 4 π см 2 , большого - 169 π см 2 169\pi\text{ см}^2 1 6 9 π см 2 , а высота его равна 14 см 14\text{ см} 1 4 см .

Решение

S 1 = 64 π S_1=64\pi S 1 = 6 4 π
S 2 = 169 π S_2=169\pi S 2 = 1 6 9 π
h = 14 h=14 h = 1 4

Найдем радиус малого основания:

S 1 = π ⋅ r 1 2 S_1=\pi\cdot r_1^2 S 1 = π ⋅ r 1 2

64 π = π ⋅ r 1 2 64\pi=\pi\cdot r_1^2 6 4 π = π ⋅ r 1 2

64 = r 1 2 64=r_1^2 6 4 = r 1 2

R 1 = 8 r_1=8 r 1 = 8

Аналогично, для большого основания:

S 2 = π ⋅ r 2 2 S_2=\pi\cdot r_2^2 S 2 = π ⋅ r 2 2

169 π = π ⋅ r 2 2 169\pi=\pi\cdot r_2^2 1 6 9 π = π ⋅ r 2 2

169 = r 2 2 169=r_2^2 1 6 9 = r 2 2

R 2 = 13 r_2=13 r 2 = 1 3

Вычислим объем конуса:

V = 1 3 ⋅ π ⋅ h ⋅ (r 1 2 + r 1 ⋅ r 2 + r 2 2) = 1 3 ⋅ π ⋅ 14 ⋅ (8 2 + 8 ⋅ 13 + 1 3 2) ≈ 4938 см 3 V=\frac{1}{3}\cdot\pi\cdot h\cdot (r_1^2+r_1\cdot r_2+r_2^2)=\frac{1}{3}\cdot\pi\cdot14\cdot(8^2+8\cdot 13+13^2)\approx4938\text{ см}^3 V = 3 1 ​ ⋅ π ⋅ h ⋅ (r 1 2 + r 1 r 2 + r 2 2 ) = 3 1 ​ ⋅ π ⋅ 1 4 ⋅ (8 2 + 8 ⋅ 1 3 + 1 3 2 ) ≈ 4 9 3 8 см 3

Ответ

4938 см 3 . 4938\text{ см}^3. 4 9 3 8 см 3 .

Формула объема усеченного конуса через площади оснований и их расстояние до вершины

Пусть у нас есть усеченный конус. Мысленно добавим к нему недостающий кусок, тем самым делая из него “обычный конус” с вершиной. Тогда объем усеченного конуса можно найти как разность объемов двух конусов с соответствующими основаниями и их расстоянием (высотой) до вершины конуса.

Объем усеченного конуса

V = 1 3 ⋅ S ⋅ H − 1 3 ⋅ s ⋅ h = 1 3 ⋅ (S ⋅ H − s ⋅ h) V=\frac{1}{3}\cdot S\cdot H-\frac{1}{3}\cdot s\cdot h=\frac{1}{3}\cdot (S\cdot H-s\cdot h) V = 3 1 ​ ⋅ S ⋅ H − 3 1 ​ ⋅ s ⋅ h = 3 1 ​ ⋅ (S ⋅ H − s ⋅ h )

S S S - площадь основания большого конуса;
H H H - высота этого (большого) конуса;
s s s - площадь основания малого конуса;
h h h - высота этого (малого) конуса;

Задача 2

Определите объем усеченного конуса, если высота полного конуса H H H равна 10 см 10\text{ см}

Решение

R = 5 R=5

Найдем площади обоих оснований конуса:

S = π ⋅ R 2 = π ⋅ 5 2 ≈ 78.5 S=\pi\cdot R^2=\pi\cdot 5^2\approx78.5

s = π ⋅ r 2 = π ⋅ 4 2 ≈ 50.24 s=\pi\cdot r^2=\pi\cdot 4^2\approx50.24

Найдем высоту малого конуса h h

H − h = 8 H-h=8

h = H − 8 h=H-8

h = 10 − 8 h=10-8

h = 2 h=2

Объем равен по формуле:

V = 1 3 ⋅ (S ⋅ H − s ⋅ h) ≈ 1 3 ⋅ (78.5 ⋅ 10 − 50.24 ⋅ 2) ≈ 228 см 3 V=\frac{1}{3}\cdot (S\cdot H-s\cdot h)\approx\frac{1}{3}\cdot (78.5\cdot 10-50.24\cdot 2)\approx228\text{ см}^3

Ответ

228 см 3 . 228\text{ см}^3.

Похожие публикации